

Think Automotive Dependability. Think Infineon.

Bill Stewart (Senior Director, Vehicle Automation & Chassis) (infineon December 2020

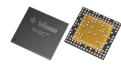
We shape the future of mobility with microelectronics enabling clean, safe, smart cars

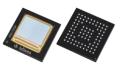
Clean

- Clean combustion engines
- Efficient energy management
- Electrified drivetrain

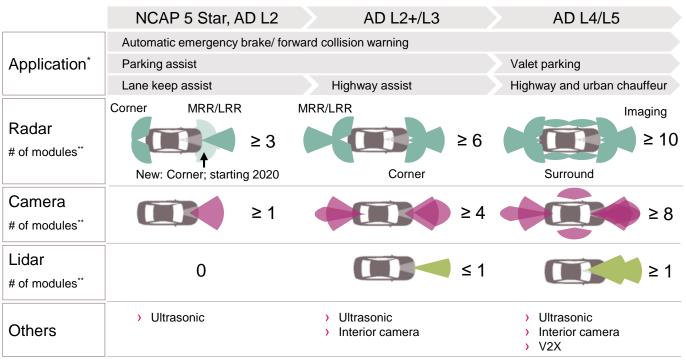
Safe

- Occupant and pedestrian protection
- Collision avoidance
- Advanced driver assistance


Smart


- Individual convenience
- Secure connectivity, data integrity and privacy

Infineon has industry's broadest product portfolio covering entire range of auto applications



Body	Cluster/ Infotainment	Chassis	Powertrain	ADAS/AD
Sensors (magnetic, pressure, radar, current, 3D ToF, TrueTouch®, CapSense®)				
	ded Power ICs, Traveo™)		MCU (AURIX™)	
Memory (NOR Flash, SRAM, nvSRAM, F-RAM)				
Power (MOSFETs, IGBTs, modules, driver ICs, power ICs, LDOs, PMICs, USB Type-C PD)				
Connectivity (USB)	Connectivity (Wi-Fi, BT, BLE)			
Application examples				
HVAC	instrument cluster) braking	engine management	> speed control
odoor control	in-cabin entertainment) steering	> transmission	› emergency braking
pumps	> touch control	stability program	main inverter	blind spot detection
seat adjustment	in-cabin charging	> suspension	auxiliaries	> sensor fusion

Increased sensor requirements drive the content in the next five years and beyond

More sensors required for any next level of automation

^{*} Source: VDA (German Association of the Automotive Industry); Society of Automotive Engineers

^{**} market assumption

Dependable electronics are the foundation for trust

"Delivering self-driving cars at scale isn't just about winning the tech race, it's about winning the **tech race and the trust race**."

Dan Ammann, CEO, Cruise, July 2019

"Designing automated vehicles that people trust is just as important as the technology required to make them work"

Intel - "A Matter of Trust" Whitepaper

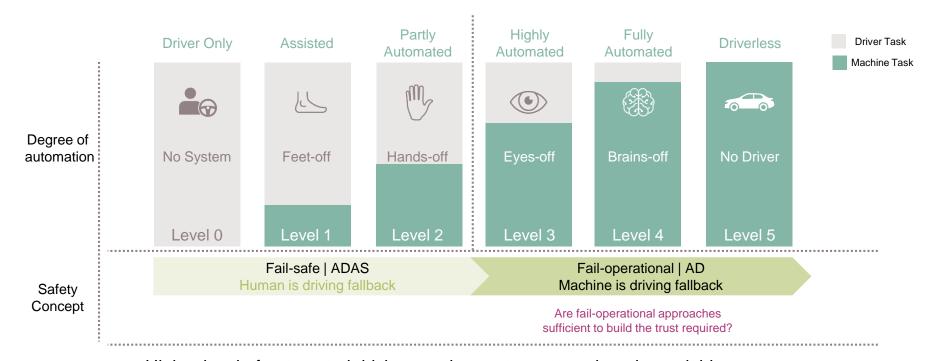
"We're Building Self-Driving Technology You Can Trust."

Argo.ai Website Headline

Dependability is the key driver for the megatrend automated driving

Technology

Trust


Autonomous Driving

Dependability definition | n.

The quality of being trustworthy or reliable; trust in safety

Automated driving systems are fueling the need for trust

Higher level of automated driving require trust; trust requires dependable systems

Source: Barclays Research & Infineon

Dependable systems are highly available and secure systems, increasing the need for more dependable electronics

High Availability | Ensure high availability beyond critical operations; a safe and secure system, that operates in all conditions

Fail-Operational | Mitigate potentially hazardous effects by ensuring critical operations in the event of a failure

Fail-Safe | in the event of a failure, system enters safe state

Lower levels (ADAS, <L2)

System enters safe mode

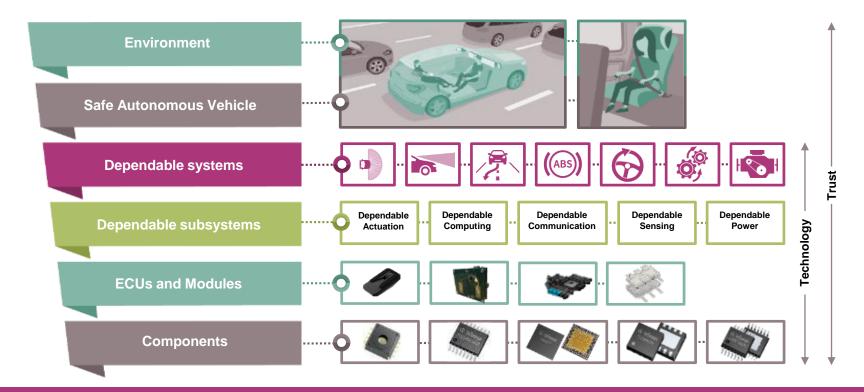
Reliable, robust, safe, secure

Higher levels (AD, ≥L2+)

System continues safety critical tasks

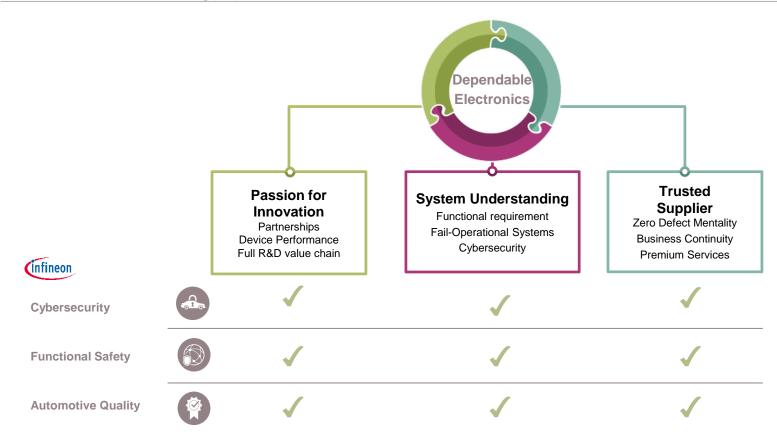
Fail safe + available

Higher levels (AD, ≥L3+)


High availability in all conditions

Fail operational + highly available

Dependability is part of Infineon's cultural mindset with system understanding as one of its key ingredients



Infineon leverages a deeply embedded system thinking

Infineon's dependable electronics We offer technology you can trust

Part of your life. Part of tomorrow.

For more information on each topic please click on the respective image below

